

Building and Working in
Environments for Embodied AI

CVPR 2022 Tutorial

 The Basic Frameworks and
Techniques for Embodied AI

Building and Working in Environments for Embodied AI (part II)

CVPR 2022 Tutorial

● We are going to talk about

○ How the embodied AI community models and solves problems

○ How simulators and environments are built

○ How to build your own environment

● This section is for all people who want to build or use
embodied AI environments.

Overview

● Modeling and approaches for Embodied AI

● Simulation technology for Embodied AI

● Building an environment from scratch

Outline

● Modeling and approaches for Embodied AI
○ World model
○ Learning-based methods to solve tasks
○ Classic robotics

● Simulation technology for Embodied AI

● Building an environment from scratch

Outline

● Modeling and approaches for Embodied AI
○ World model
○ Learning-based methods to solve tasks
○ Classic robotics

● Simulation technology for Embodied AI

● Building an environment from scratch

Outline

 Position

 Velocity

 Acceleration

Newton’s second law of motion

How do People Model the World?

If we call the state of the world,

And an action on the world.

Newton’s second law models the transition
of state under action over time.

How do People Model the World?

An Embodied AI Example

?

Task: push block to target location.

States
A state is a configuration of the
world.

● In this example
○ Joint angles θ1-θ7
○ block position and orientation
○ target position

The collection of all states is
called the state space .

Actions
An action is a robot command.

● For example
○ Motor torque

The collection of all actions is
called the action space .

Transition
The transition function describes how the state changes
over time according to an action.

Formally, describes the rate of change of the state given
the current state and action.

Transition function: classical mechanics

The Forward Model
The forward model is a 3-tuple

 : State Space all possible world states

 : Action Space all possible control signals

 : Transition environment dynamics

Modeling Transition on a Computer

On a computer, things are discrete.

In general, the transition can be stochastic.

Discretize over time

Note: one may model stochasticity in the continuous time case (stochastic differential equations) but it is out of scope in this tutorial.

We call 1/Δt as the action frequency

When is a Task Successful?
● How do we know if a task is complete?
● Idea: define success on states

○ Box xyz is close to target xyz
○ Box velocity is close to 0
○ Robot velocity is close to 0

When is a Task Successful?
● More generally, we can introduce a reward function

to measure how successful the current state/action is.

● For example
○ The environment gives a reward of

1 when the block is close to the
target, 0 otherwise.

When is a Task Successful?
● More generally, we can introduce a reward function

to measure how successful the current state/action is.

● The 4 tuple is formally known as a Markov
Decision Process (MDP).

Markov Decision Process
Markov Decision Process is a 4-tuple

 : State Space all possible world states

 : Action Space all possible control signals

 : Transition environment dynamics

 : Reward how successful is the state/action

To solve an embodied AI task, the agent needs to know what
action to take given the current state.

This is called a policy.

A policy takes a state and outputs an action (can be
stochastic).

A good policy should eventually complete the task (reach a
successful state or accumulate a great amount of reward).

How to Solve Embodied AI Tasks

How to Solve Embodied AI Tasks

● Imitate an expert.
○ Imitation learning
○ Both and are not needed

● Learn to accumulate reward in an MDP
○ Reinforcement learning
○ Model-free: is not modeled
○ Model-based: is learned in the process

● Design rules based on mechanics
○ Classic robotics
○ is modeled in advance (including learned models)

● Modeling and approaches for Embodied AI
○ World model
○ Learning-based methods to solve tasks

■ Imitation learning, reinforcement learning
○ Classic robotics

● Simulation technology for Embodied AI

● Building an environment from scratch

Outline

Optimal Policy
For a given policy

We run the policy on the environment for H steps and collect
rewards

An optimal policy is the one that maximizes the expected
cumulative reward

Note: in practice, a discount factor is often used to handle the case H=∞. It is not discussed here for simplicity.

Example of Optimal Policy
The environment gives a reward
of 1 when the block is close to
the target, 0 otherwise.

Let’s also assume the system is
terminated when the reward is 1.

An optimal policy is one that
moves the block to the target
eventually.

Partially-Observable MDP
In practice, the state is not always known.

Instead, we get some observation.

E.g., position of the cube vs an image of
the cube

● Common observations
○ RGB-D image
○ Position & velocity of objects and robots
○ Task information (e.g. goal)
○ Other sensory readings

OpenAI Gym https://www.gymlibrary.ml/content/api/

MDP

Simulating MDP on a Computer

env.step()

Action

Observation Reward Info Done

Start

env.reset()

Done?

Policy

Stop

Yes

No

Agent

https://www.gymlibrary.ml/

How to get a Good Policy
Now how do we find a good policy?

● Idea 1: assume an expert (e.g., human) has solved the
task; mimic this behavior — imitation learning.

● Idea 2: interact with the environment and try to improve
the policy with reward —reinforcement learning.

Imitation Learning
● Input: expert demonstrations
● Output: policy

Observation
Training

DataAction

Supervised
Learning

Expert

Reinforcement Learning
● What if we do not have expert data?
● Learn from interaction experience.

a. Interact with environment (env.step) to collect experience.
b. Use collected experience to improve the current policy.
c. Repeat ab.

Recommended reading:
https://www.deepmind.com/learning-resources/introduction
-to-reinforcement-learning-with-david-silver https://openai.com/blog/solving-rubiks-cube/

https://www.deepmind.com/learning-resources/introduction-to-reinforcement-learning-with-david-silver
https://www.deepmind.com/learning-resources/introduction-to-reinforcement-learning-with-david-silver

Reinforcement Learning Taxonomy

OpenAI Spinup https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html

Combining Reinforcement Learning
and Expert Demonstrations

● “Learning from demonstrations”
○ Offline RL: train RL with given experience without further

interactions

○ Augmenting online RL training with demonstrations

○ Dynamic movement primitives

○ Learning transition model from demonstrations

● Modeling and approaches for Embodied AI
○ World model
○ Learning-based methods to solve tasks
○ Classic robotics

● Simulation technology for Embodied AI

● Building an environment from scratch

Outline

Plan and Control

?

A popular pipeline in classic robotics is planning and control.

Plan and Control
A popular pipeline in classic robotics is planning and control.

Motion planning generates a trajectory (position, velocity, and acceleration)
of the robot.

Generate Trajectory
(Motion Planning)

Plan and Control
A popular pipeline in classic robotics is planning and control.

Motion planning generates a trajectory (position, velocity, and acceleration)
of the robot.
Control executes the trajectory.

Generate Trajectory
(Motion Planning)

Execute Trajectory
(Control)

Motion Planning

Generate Trajectory
(Motion Planning)

● Task: move a robot from one pose to another

Motion Planning

Ratliff N, Zucker M, Bagnell J A, et al. CHOMP: Gradient optimization techniques for efficient motion planning, ICRA 2009
Schulman, John, et al. Finding Locally Optimal, Collision-Free Trajectories with Sequential Convex Optimization, RSS 2013

● Task: move a robot from one pose to another
● Assumptions

○ We know the start and goal pose
○ We can verify if a given pose is valid (usually means collision-free)
○ We can verify whether a pose is reachable from another pose

using some simple control strategy

Motion Planning

● Task: move a robot from one pose to another
● Assumptions

○ We know the start and goal pose
○ We can verify if a random pose is valid (usually means

collision-free)
○ We can verify whether a pose is reachable from another pose

using some simple control strategy

● Algorithms
○ Rapidly-exploring random tree (RRT)
○ Probabilistic roadmap method (PRM)

Motion Planning

Motion Planning Example: PRM

Motion Planning Example: PRM

● Phase 1: Map construction
○ Randomly sample collision-free configurations
○ Connect every sampled state to its neighbors
○ Connect the start and goal states to the graph

Motion Planning Example: PRM

● Phase 2: Query
○ Run path finding algorithms like Dijkstra

How to Find a Robot Pose
For Grasping?

● Some tasks (such as grasping) require
moving the gripper to a position.

● How do we find the robot pose of a given
gripper pose?

?

How to Find a Robot Pose
For Grasping?

● Some tasks (such as grasping) require
moving the gripper to a position.

● How do we find the robot pose of a given
gripper pose?
○ Inverse Kinematics (IK) ?

Code in SAPIEN

Time Parameterization
● PRM/RRT gives a path with discrete joint positions
● A time parameterization algorithm converts the path

to a joint trajectory with time.

Control

Execute Trajectory
(Control)

Control
● Robotic control executes a given trajectory by

controlling the joint torques

Control
● Robotic control executes a given trajectory by

controlling the joint torques
○ q represents the joint positions of a robot

● Similar to , the dynamic model of a robot is
known.
○ Forward dynamics:
○ Inverse dynamics:

Inertia matrix Coriolis matrix Gravity & other forces

Control
● What we have

○ Trajectory
○ Inverse dynamics:

● Ideally, using computed from gives a perfect
trajectory.

● However, the real world is not perfect. What if there is
some error?

● The PD control law has the form

● Intuitively
○ When the position lags behind (), increase to catch

up
○ When it is moving too slow (), also increase to catch

up
○ Inverse dynamics is not used at all!

PD Control

where

● PD control has no convergence guarantee in general
● When it converges, often
● How to fix it?

● Combine PD control and inverse dynamics. (Augmented
PD control)

PD Control

PID Control
● To mitigate steady-state errors, an integral term is often

added.

PID:

Augmented PID:

Example: PD Velocity Controller
● Velocity controller

○ Constant velocity trajectory; acceleration is 0
○ Do not care about position error;

Code in SAPIEN

Use Control in MDP Modeling
● When an RL work says: we use “velocity control” or

“position control” as action. What does that mean?

Use Control in MDP Modeling
● The action in an MDP can be “target joint velocity” or

“target joint position” for a controller.

Use Control in MDP Modeling
● The action in an MDP can be “target joint velocity” or

“target joint position” for a controller.

● A controller (such as PD) is used to convert this velocity
or position signal to joint torques, which are then used to
drive the robot.

Use Control in MDP Modeling
● The action in an MDP can be “target joint velocity” or

“target joint position” for a controller.

● A controller (such as PD) is used to convert this velocity
or position signal to joint torques, which are then used to
drive the robot.

● Joint velocity/position may be a better choice for MDP
action (than torque) due to learnability and sim-to-real
transferability.

More About Control
● Control focuses on stability and robustness
● There is a huge literature

○ Optimal control
○ Feedforward/feedback control (including PD)
○ Robust control
○ Self-organized control
○ Stochastic control
○ …

● Optimal control has a strong connection with RL

https://en.wikipedia.org/wiki/Stochastic_control

Summary
● Embodied AI Approaches

○ Learning-based methods
■ Imitation learning
■ Reinforcement learning
■ …

○ Classic robotics
■ Planning
■ Control
■ …

● In-depth discussion of these topics
○ Course: machine learning for robotics
○ https://haosulab.github.io/ml-for-robotics/SP22/index.html

https://haosulab.github.io/ml-for-robotics/SP22/index.html

How do we Study
Embodied AI Algorithms?

● An environment is required to develop approaches
● Real robot?

○ High costs
○ Safety concerns

● Simulation environment?
○ Physical simulation
○ Camera simulation
○ Assets loading
○ Sim-to-real gaps

● Modeling and approaches for Embodied AI

● Simulation technology for Embodied AI
○ From simulator to environment
○ Rigid body simulation
○ Camera simulation
○ Assets

● Building an environment from scratch

Outline

● Modeling and approaches for Embodied AI

● Simulation technology for Embodied AI
○ From simulator to environment
○ Rigid body simulation
○ Camera simulation
○ Assets

● Building an environment from scratch

Outline

Simulator
● A library (often a simple SDK) that simulates one or more

physical processes.
○ Rigid body
○ Particle system
○ Light transport (renderer)

Nvidia Flex Solver Bullet Physics SDKMuJoCo Engine

Engine
● A software that bundles together simulators to help

developers.
○ E.g., “Game engine”
○ Sometimes also called a simulator

Unity SAPIEN PyBullet

Environment
● Bundles of engines/simulators, assets, and tasks for

studying specific embodied AI problems.
○ Some environments also call themselves a simulator.

Ai2-THOR ManiSkill AI Habitat

Environment*

Engine

Graphics & Compute API

OpenGL Vulkan CUDA

Physics SDK

PhysX Bullet Physics
SDK

Unity Unreal SAPIEN PyBullet MuJoCo

MuJoCo
Engine

*Some environments may not have an engine and are developed directly on low-level graphics & physics SDKs.

Dependency

Assets

PartNet-Mobility

Matterport 3D

…

…

……

Note: simulator, engine, framework, environment, etc. do not have formal definitions and are often used
interchangeably, so always use context to understand the software.

AI2-THOR AI Habitat ManiSkill iGibson VR Kitchen Robosuite …Isaac Gym

Environment*

Engine

Graphics & Compute API

OpenGL Vulkan CUDA

Physics SDK

PhysX Bullet Physics
SDK

Unity Unreal SAPIEN PyBullet MuJoCo

MuJoCo
Engine

AI2-THOR AI Habitat ManiSkill iGibson VR Kitchen Robosuite

*Some environments may not have an engine and are developed directly on low-level graphics & physics SDKs.

Dependency

Assets

PartNet-Mobility

Matterport 3D

…

…

…

…

…

Note: simulator, engine, framework, environment, etc. do not have formal definitions and are often used
interchangeably, so always use context to understand the software.

Isaac Gym

What to Choose?
● Graphics/physics SDK

○ If you are creating a new engine or modifying an engine.

● Engine
○ If you are creating a new environment.

● Environment
○ If you want to solve a predefined embodied AI problem.

● Modeling and approaches for Embodied AI

● Simulation technology for Embodied AI
○ From simulator to environment
○ Rigid body simulation
○ Camera simulation
○ Assets

● Building an environment from scratch

Outline

Rigid Body Simulation
● You probably have heard of physical simulators

○ MuJoCo, Bullet, PhysX
○ What do they do?

Rigid Body Simulation
● You probably have heard of physical simulators

○ MuJoCo, Bullet, PhysX
○ What do they do?

■ Model motion of bodies

Rigid Body Simulation
● You probably have heard of physical simulators

○ MuJoCo, Bullet, PhysX
○ What do they do?

■ Model motion of bodies
■ Handle collisions

Rigid Body Simulation
● You probably have heard of physical simulators

○ MuJoCo, Bullet, PhysX
○ What do they do?

■ Model motion of bodies
■ Handle collisions
■ Handle connected bodies

● Most rigid body simulations repeat the following steps

Rigid Body Simulation

Stepping

Collision detection

Constraint solving

● Most rigid body simulations repeat the following steps

Rigid Body Simulation

Stepping

Collision detection

Constraint solving

pybullet.stepSimulation

sapien.core.Scene.step

● Advance the simulation time
● Most common choice: semi-implicit Euler

Stepping

Collision Detection
● Collision detection tries to find contacts

a. Run a collision detection algorithm to find contact point
positions, normals, and penetration/separation distances.

b. Add each contact to the constraints
c. (Constraints are solved later)

● Constraints are physical restrictions, such as
○ Bodies connected with joints
○ No penetration between contact bodies

● The solver solves a system of equations or an optimization
problem to figure out a proper force/impulse to add for each
constraint.
○ Key parameter solver iterations: how long the solver is allowed to run

Constraint Solving

● Modeling and approaches for Embodied AI

● Simulation technology for Embodied AI
○ From simulator to environment
○ Rigid body simulation
○ Camera simulation
○ Assets

● Building an environment from scratch

Outline

Camera Simulation
● Camera simulation is achieved by rendering

○ Modeling light transport

● Components in camera simulation
○ Cameras
○ Lights
○ Geometries
○ Materials and textures

● Real cameras use lenses, which can cause defocus blur
● Simulations typically use the simplified pinhole model

Camera Model

● Camera frustum
○ Many simulated cameras (rasterizers like OpenGL) have a range

limit, forming a frustum

Camera Model

Near clipping plane Far clipping plane

This object is also invisible.This object will not block the camera.
It is invisible.

Lights
● Common types of lighting

○ Directional light (e.g. sun)
○ Point light (e.g. lamp)
○ Spot light (e.g. flashlight)
○ Ambient light (e.g. environment

map)
○ Area light (e.g. bright screen)
○ Indirect light (from

inter-reflections)

Directional light Point light

Spot light Ambient light

Geometry, Material, and Texture
● Geometry

○ Mesh, curve, volume, etc. representing shape of objects
● Material

○ Material describes the reflection and refraction properties of
objects
■ Physically based rendering (PBR) model. E.g., microfacet

models
■ Phong model

● Texture
○ Describes spatially varying material parameters over the

geometry

Geometry, Material, and Texture

Image source: Unreal Engine 5 Documentation
https://docs.unrealengine.com/5.0/en-US/adding-detail-textures-to-unreal-engine-materials/

Geometry

Geometry, Material, and Texture

Image source: Unreal Engine 5 Documentation
https://docs.unrealengine.com/5.0/en-US/adding-detail-textures-to-unreal-engine-materials/

Geometry

Material

Geometry, Material, and Texture

Image source: Unreal Engine 5 Documentation
https://docs.unrealengine.com/5.0/en-US/adding-detail-textures-to-unreal-engine-materials/

Geometry

Material

Geometry, Material, and Texture

Image source: Unreal Engine 5 Documentation
https://docs.unrealengine.com/5.0/en-US/adding-detail-textures-to-unreal-engine-materials/

Texture

TextureTexture

Texture

● Modeling and approaches for Embodied AI

● Simulation technology for Embodied AI
○ From simulator to environment
○ Rigid body simulation
○ Camera simulation
○ Assets

● Building an environment from scratch

Outline

Objects & Scenes

Replica DatasetPartNet-Mobility Dataset

https://github.com/facebookresearch/Replica-Dataset
https://sapien.ucsd.edu/browse

Common 3D Model
Exchange Formats

Format Material Notes

obj+mtl Phong, PBR (extension) Plain text; can be edited manually.

stl None Suitable for collision shapes.

ply Vertex color Vertex color is rarely used for material.

dae Phong Many inconsistencies. Different software
seems to disagree on its standard.

fbx Phong

glb/gltf PBR, Phong Most powerful

Recommended model loader: Assimp
https://github.com/assimp/assimp

URDF
● Unified Robot Description Format
● Designed for robotics, including

kinematics and dynamics
● XML describing an articulated body

○ <link>: a rigid part
■ <inertial>: mass and inertia of the link
■ <collision>: collision geometry
■ <visual>: rendering geometry

○ <joint>: a connector for 2 links
■ Revolute, continuous, prismatic, fixed,

floating, plannar

Importing Assets Into…

Importing Assets Into…
● Low-level simulators/renderers

○ Use assimp

https://github.com/assimp/assimp

Importing Assets Into…
● Low-level simulators/renderers

○ Use assimp
● Engines

○ SAPIEN and PyBullet load assets dynamically.
○ MuJoCo loads URDF or their own format (MJCF) all at once
○ Game engines have intuitive UI and drag-and-drop. Loading assets

programmatically is often much harder but can be done.

https://github.com/assimp/assimp

Importing Assets Into…
● Low-level simulators/renderers

○ Use assimp
● Engines

○ SAPIEN and PyBullet load assets dynamically.
○ MuJoCo loads URDF or their own format (MJCF) all at once
○ Game engines have intuitive UI and drag-and-drop. Loading assets

programmatically is often much harder but can be done.
● Environments

○ Customizability of environments is a design choice.
○ Environments also inherit asset loading procedure from their

engines.

https://github.com/assimp/assimp

Summary
● Simulators, engines, environments
● Rigid body simulation

○ Stepping, collision detection, constraint solving, repeat

● Camera simulation
○ Camera, light, geometry, material, texture

● Assets
○ 3D model formats, URDF

● Modeling and approaches for Embodied AI

● Simulation technology for Embodied AI

● Building an environment from scratch

Outline

Build “Open Cabinet” From Scratch

Decide the Task
● Task: open the door of a cabinet with a robot arm

Decide the Assets
● I will use this cabinet and this robot

○ They are both in the URDF format

Decide which Controller to Use
● Torque control?
● PD velocity control?
● A combination of controllers?
● Teleport (non-physical)?
● …

In this tutorial, I will show PD velocity control.

● How will the robot open the door?
○ Through a physical process: force and friction
○ Use a simplified model: the robot is “glued” to the door when it is

close to the door.
○ Use an even simpler model: the door automatically opens if the

robot gripper is within range.

● This tutorial demonstrates using the physical process.

Decide Object Interactions

● Simulation state?
● RGB-D from a camera?
● RGB-D + robot state?

This tutorial uses an RGB-D camera and the robot state as
observation.

Decide the Observation Space

Decide the Framework
● Choose a framework

○ SAPIEN, PyBullet, MuJoCo, Unity, etc.

● This tutorial uses SAPIEN
○ We made it.
○ Very good debug viewer.
○ Clean API, type hint, and code completion, suitable for

education.

Start Coding the MDP
● Write down the interface

for an MDP.
● The render function is

mainly for visualization

Inheriting gym.Env is not required.

Initialize Simulator and Renderer
Just some boilerplate code

Visualization!

Load the Assets

Add lights in init, so we can see the objects.

Load ground, robot and cabinet into the scene.

Since env.step is not
implemented, add
env.scene.step to the
rendering loop for debugging.

The position and scale of the
cabinet is not reasonable.

Debug the Assets
It is possible to compute the bounding box in SAPIEN and
“do it right”. Here for simplicity I use manually-tuned
numbers.

Implement Initial State (Reset)

Implement Step Function
We also need to decide how many simulation steps to take in
env.step after an action is taken.

For example, here we run the simulation at 500 Hz, if we
want a 20 Hz action, we should step the simulation 25 times
in the environment step function.

Implement Step Function
PD velocity control augmented with inverse dynamics

Implement the Observation

Add camera

Add to render function

Visualization

Implement the Observation

SAPIEN also draws the added
camera in the viewer for easier
debugging.

Implement the Observation
Finish the observation function

Reward
● Sparse reward

○ 1 when success, 0 otherwise
○ E.g., 1 if the door is opened to 60 degrees

● Dense reward
○ Give reward based on heuristics
○ E.g., proportional to the cabinet door angle
○ E.g., give reward if the gripper is close to the handle

Reward
Debugging: manually drag the door to success condition,
and see if the reward is implemented correctly.

Drag the slider and print the reward.

Done and Info
env.step can set done to True when the task is completed.

It is also okay to never set done to True.

Action Space
● For many algorithms, it is important to normalize the

actions.
● Therefore, the environment should specify the range of

the actions.

● Here the range for target velocity is [-0.2, 0.2] for all joints.

Test Random Actions

Code will be released at https://github.com/haosulab/cvpr-tutorial-2022 after this tutorial.

https://github.com/haosulab/cvpr-tutorial-2022

Are we Done?

Are we Done?

No.

Iterate
● Developing environments is an iterative process

a. Develop the environment following this tutorial.
b. Find issues later when solving the environment.
c. Analyze the issue. Modify the environment if needed.

■ (E.g. The environment above probably will not work because I used
default friction, which is too small for the gripper to hold firmly)

● We introduce common issues in the later section
Experiences and Practices to Debug Simulators

Summary
● Build an environment

Decide the task

Decide assets

Decide controllers

Decide object
interactions

Decide the
observation space

Pick a framework

Implement the MDP

Test, debug, iterate

Q & A
● Contact: Fanbo Xiang (fxiang@eng.ucsd.edu)

mailto:fxiang@eng.ucsd.edu

