<table>
<thead>
<tr>
<th>Start</th>
<th>End</th>
<th>Section</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>13:00</td>
<td>13:45</td>
<td>Overview of Embodied AI</td>
<td>Zhiwei Jia (video)</td>
</tr>
<tr>
<td>13:45</td>
<td>14:30</td>
<td>The Basic Frameworks and techniques for Embodied AI</td>
<td>Fanbo Xiang (in person)</td>
</tr>
<tr>
<td>14:30</td>
<td>15:15</td>
<td>Design Choices in Embodied AI Environments</td>
<td>Jiayuan Gu (video)</td>
</tr>
<tr>
<td>15:15</td>
<td>15:30</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>15:30</td>
<td>16:15</td>
<td>Experience and Practices to Debug Simulators</td>
<td>Fanbo Xiang (in person)</td>
</tr>
<tr>
<td>16:15</td>
<td>16:35</td>
<td>Real World Robotics and Sim2Real</td>
<td>Rui Chen (video)</td>
</tr>
<tr>
<td>16:35</td>
<td>17:00</td>
<td>Embodied AI Tasks in ManiSkill and Visual Learning Challenges</td>
<td>Fanbo Xiang (in person)</td>
</tr>
</tbody>
</table>
Building and Working in Environments for Embodied AI

CVPR 2022 Tutorial
<table>
<thead>
<tr>
<th>Start</th>
<th>End</th>
<th>Section</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>13:00</td>
<td>13:45</td>
<td>Overview of Embodied AI</td>
<td>Zhiwei Jia (video)</td>
</tr>
<tr>
<td>13:45</td>
<td>14:30</td>
<td>The Basic Frameworks and techniques for Embodied AI</td>
<td>Fanbo Xiang (in person)</td>
</tr>
<tr>
<td>14:30</td>
<td>15:15</td>
<td>Design Choices in Embodied AI Environments</td>
<td>Jiyuan Gu (video)</td>
</tr>
<tr>
<td>15:15</td>
<td>15:30</td>
<td>Break</td>
<td></td>
</tr>
<tr>
<td>15:30</td>
<td>16:15</td>
<td>Experience and Practices to Debug Simulators</td>
<td>Fanbo Xiang (in person)</td>
</tr>
<tr>
<td>16:15</td>
<td>16:35</td>
<td>Real World Robotics and Sim2Real</td>
<td>Rui Chen (video)</td>
</tr>
<tr>
<td>16:35</td>
<td>17:00</td>
<td>Embodied AI Tasks in ManiSkill and Visual Learning Challenges</td>
<td>Fanbo Xiang (in person)</td>
</tr>
</tbody>
</table>
The Basic Frameworks and Techniques for Embodied AI

Building and Working in Environments for Embodied AI (part II)

CVPR 2022 Tutorial
Overview

- We are going to talk about
 - How the embodied AI community models and solves problems
 - How simulators and environments are built
 - How to build your own environment

- This section is for all people who want to build or use embodied AI environments.
Outline

● Modeling and approaches for Embodied AI
● Simulation technology for Embodied AI
● Building an environment from scratch
Outline

● Modeling and approaches for Embodied AI
 ○ World model
 ○ Learning-based methods to solve tasks
 ○ Classic robotics

● Simulation technology for Embodied AI

● Building an environment from scratch
Outline

● Modeling and approaches for Embodied AI
 ○ World model
 ○ Learning-based methods to solve tasks
 ○ Classic robotics

● Simulation technology for Embodied AI

● Building an environment from scratch
How do People Model the World?

\[
\begin{align*}
x & \quad \text{Position} \\
\dot{x} & := \frac{dx}{dt} \quad \text{Velocity} \\
\ddot{x} & := \frac{d\dot{x}}{dt} \quad \text{Acceleration}
\end{align*}
\]

Newton’s second law of motion

\[
F = m\ddot{x}
\]
How do People Model the World?

If we call \((x, \dot{x})\) the state of the world,
And \(F\) an action on the world.
Newton’s second law models the transition of state under action over time.

\[
\frac{d}{dt}(x, \dot{x}) = (\ddot{x}, \frac{F}{m})
\]
An Embodied AI Example

Task: push block to target location.
A **state** is a configuration of the world.

- In this example
 - Joint angles θ_1-θ_7
 - Block position and orientation
 - Target position

The collection of all states is called the state space \mathcal{S}.
An **action** is a robot command.

- For example
 - Motor torque

The collection of all actions is called the action space \mathcal{A}.
The transition function \mathcal{T} describes how the state changes over time according to an action.

Formally, \mathcal{T} describes the rate of change of the state given the current state and action.

$$\dot{s} := \frac{ds}{dt} = \mathcal{T}(s, a)$$
The Forward Model

The forward model is a 3-tuple \((S, A, T)\)

\(S\) : State Space \quad \text{all possible world states}

\(A\) : Action Space \quad \text{all possible control signals}

\(T\) : Transition \quad \text{environment dynamics}
Modeling Transition on a Computer

On a computer, things are discrete.

\[\dot{s} = \mathcal{T}(s, a) \quad \text{Discretize over time} \]

\[s_{t+1} = \hat{\mathcal{T}}(s_t, a_t) \]

We call \(1/\Delta t \) as the action frequency

In general, the transition can be stochastic.

\[s_{t+1} \sim \mathcal{T}(\cdot | s_t, a_t) \]

Note: one may model stochasticity in the continuous time case (stochastic differential equations) but it is out of scope in this tutorial.
When is a Task Successful?

- How do we know if a task is complete?
- Idea: define success on states
 - Box xyz is close to target xyz
 - Box velocity is close to 0
 - Robot velocity is close to 0
When is a Task Successful?

- More generally, we can introduce a **reward** function R to measure how successful the current state/action is.

- For example
 - The environment gives a reward of 1 when the block is close to the target, 0 otherwise.
When is a Task Successful?

- More generally, we can introduce a **reward** function R to measure how successful the current state/action is.

- The 4 tuple (S, A, T, R) is formally known as a **Markov Decision Process (MDP)**.
Markov Decision Process

Markov Decision Process is a 4-tuple (S, A, T, R)

S: State Space all possible world states

A: Action Space all possible control signals

T: Transition environment dynamics

R: Reward how successful is the state/action
How to Solve Embodied AI Tasks

To solve an embodied AI task, the agent needs to know what action to take given the current state. This is called a policy.

A policy \(\pi \) takes a state and outputs an action (can be stochastic).

\[
a \sim \pi(\cdot | s)
\]

A good policy should eventually complete the task (reach a successful state or accumulate a great amount of reward).
How to Solve Embodied AI Tasks

- **Imitate an expert.**
 - Imitation learning
 - Both T and R are not needed
- **Learn to accumulate reward in an MDP**
 - Reinforcement learning
 - Model-free: T is not modeled
 - Model-based: T is learned in the process
- **Design rules based on mechanics**
 - Classic robotics
 - T is modeled in advance (including learned models)
Outline

● Modeling and approaches for Embodied AI
 ○ World model
 ○ Learning-based methods to solve tasks
 ■ Imitation learning, reinforcement learning
 ○ Classic robotics

● Simulation technology for Embodied AI

● Building an environment from scratch
Optimal Policy

For a given policy \(a \sim \pi(\cdot | s) \)

We run the policy on the environment for \(H \) steps and collect rewards

\[
a_t \sim \pi(\cdot | s_t) \quad s_{t+1} \sim \mathcal{T}(\cdot | s_t, a_t) \quad r_{t+1} \sim \mathcal{R}(\cdot | s_t, a_t, s_{t+1})
\]

An optimal policy is the one that maximizes the expected cumulative reward

\[
\mathbb{E}\left[\sum_{t=1}^{H} r_t \right]
\]

Note: in practice, a discount factor is often used to handle the case \(H=\infty \). It is not discussed here for simplicity.
Example of Optimal Policy

The environment gives a reward of 1 when the block is close to the target, 0 otherwise.

Let’s also assume the system is terminated when the reward is 1.

An optimal policy is one that moves the block to the target eventually.
Partially-Observable MDP

In practice, the **state** is not always known. Instead, we get some **observation**.

E.g., position of the cube vs an image of the cube

- Common observations
 - RGB-D image
 - Position & velocity of objects and robots
 - Task information (e.g. goal)
 - Other sensory readings

OpenAI Gym https://www.gymlibrary.ml/content/api/
How to get a Good Policy

Now how do we find a good policy?

- Idea 1: assume an expert (e.g., human) has solved the task; mimic this behavior — *imitation learning*.
- Idea 2: interact with the environment and try to improve the policy with reward — *reinforcement learning*.
Imitation Learning

- **Input:** expert demonstrations \(\{(s_t, a_t)\} \)
- **Output:** policy \(a \sim \pi_\theta(\cdot|s) \)
Reinforcement Learning

- What if we do not have expert data?
- Learn from interaction experience.
 a. Interact with environment (env.step) to collect experience.
 b. Use collected experience to improve the current policy.
 c. Repeat ab.

Recommended reading:

https://openai.com/blog/solving-rubiks-cube/
Reinforcement Learning Taxonomy

RL Algorithms
- Model-Free RL
 - Policy Optimization
 - Policy Gradient
 - A2C / A3C
 - PPO
 - TRPO
 - SAC
 - Q-Learning
 - DDPG
 - TD3
 - SAC
- Model-Based RL
 - Learn the Model
 - DQN
 - C51
 - QR-DQN
 - HER
 - Given the Model
 - World Models
 - I2A
 - MBMF
 - MBVE

Combining Reinforcement Learning and Expert Demonstrations

- “Learning from demonstrations”
 - Offline RL: train RL with given experience without further interactions
 - Augmenting online RL training with demonstrations
 - Dynamic movement primitives
 - Learning transition model from demonstrations
Outline

● Modeling and approaches for Embodied AI
 ○ World model
 ○ Learning-based methods to solve tasks
 ○ Classic robotics

● Simulation technology for Embodied AI

● Building an environment from scratch
Plan and Control

A popular pipeline in classic robotics is planning and control.
Plan and Control

A popular pipeline in classic robotics is planning and control.

Motion planning generates a trajectory (position, velocity, and acceleration) of the robot.
A popular pipeline in classic robotics is planning and control.

Motion planning generates a trajectory (position, velocity, and acceleration) of the robot. Control executes the trajectory.
Motion Planning

Generate Trajectory
(Motion Planning)
Motion Planning

- Task: move a robot from one pose to another

Motion Planning

- Task: move a robot from one pose to another
- Assumptions
 - We know the start and goal pose
 - We can verify if a given pose is valid (usually means collision-free)
 - We can verify whether a pose is reachable from another pose using some simple control strategy
Motion Planning

- **Task:** move a robot from one pose to another
- **Assumptions**
 - We know the start and goal pose
 - We can verify if a random pose is valid (usually means collision-free)
 - We can verify whether a pose is reachable from another pose using some simple control strategy
- **Algorithms**
 - Rapidly-exploring random tree (RRT)
 - Probabilistic roadmap method (PRM)
Motion Planning Example: PRM
Motion Planning Example: PRM

- Phase 1: Map construction
 - Randomly sample collision-free configurations
 - Connect every sampled state to its neighbors
 - Connect the start and goal states to the graph
Motion Planning Example: PRM

- Phase 2: Query
 - Run path finding algorithms like Dijkstra
How to Find a Robot Pose For Grasping?

- Some tasks (such as grasping) require moving the gripper to a position.
- How do we find the robot pose of a given gripper pose?
How to Find a Robot Pose For Grasping?

- Some tasks (such as grasping) require moving the gripper to a position.
- How do we find the robot pose of a given gripper pose?
 - Inverse Kinematics (IK)

```python
robot_model = robot.create_pinocchio_model()

joint_positions, success, error = robot_model.compute_inverse_kinematics(
    link_idx,  
    target_pose,  
    active_qmask = joint_mask  # joints with mask value 1 are allowed to move  
    max_iterations = 100        
)
```

Code in SAPIEN
Time Parameterization

- PRM/RRT gives a path with discrete joint positions \(q_d \).
- A time parameterization algorithm converts the path \(q_d \) to a joint trajectory \((q_d, \dot{q}_d, \ddot{q}_d) \) with time.
Control

Execute Trajectory (Control)
Control

- Robotic control executes a given trajectory \((q_d, \dot{q}_d, \ddot{q}_d)\) by controlling the joint torques \(\tau\)
Control

- Robotic control executes a given trajectory \((q_d, \dot{q}_d, \ddot{q}_d)\) by controlling the joint torques \(\mathbf{T}\)
 - \(q\) represents the joint positions of a robot
- Similar to \(\mathbf{F} = ma\), the dynamic model of a robot is known.
 - Forward dynamics: \(\ddot{q} = \text{FD}(\mathbf{T}; q, \dot{q})\)
 - Inverse dynamics: \(\mathbf{T} = \text{ID}(\ddot{q}; q, \dot{q}) = M(q)\ddot{q} + C(q, \dot{q})\dot{q} + g(q)\)
Control

- What we have
 - Trajectory \((q_d, \dot{q}_d, \ddot{q}_d)\)
 - Inverse dynamics: \(\tau = \text{ID}(\ddot{q}; q, \dot{q})\)
- Ideally, using \(\tau\) computed from \(\ddot{q}_d\) gives a perfect trajectory.
- However, the real world is not perfect. What if there is some error?

\[e = q - q_d \]
PD Control

- The PD control law has the form

\[\tau = -K_v \dot{e} - K_p e \quad \text{where} \quad K_v, K_p \in \mathbb{S}^+ \quad e = q - q_d \]

- Intuitively
 - When the position lags behind \((e < 0)\), increase \(\tau\) to catch up
 - When it is moving too slow \((\dot{e} < 0)\), also increase \(\tau\) to catch up
 - Inverse dynamics is not used at all!
PD Control

- PD control has no convergence guarantee in general
- When it converges, often $e \neq 0$
- How to fix it?

- Combine PD control and inverse dynamics. (Augmented PD control)

$$\tau = ID(\ddot{q}; q, \dot{q}) - K_v \dot{e} - K_p e$$
PID Control

- To mitigate steady-state errors, an integral term is often added.

PID: \[\tau = -K_v \dot{e} - K_p e - K_i \int_0^t e(t) dt \]

Augmented PID: \[\tau = ID(\ddot{q}; q, \dot{q}) - K_v \dot{e} - K_p e - K_i \int_0^t e(t) dt \]

where \(K_v, K_p, K_i \in \mathbb{S}^+ \) and \(e = q - q_d \).
Example: PD Velocity Controller

- Velocity controller
 - Constant velocity trajectory; acceleration is 0
 - Do not care about position error; $K_p = 0$

$$\tau = \text{ID}(0; q, \dot{q}) - K_v \dot{e}$$

```python
for joint in robot.get_active_joints():
    # stiffness: diagonal of Kp
    # damping: diagonal of Kv
    joint.set_drive_property(stiffness=0, damping=10.0)

robot.set_drive_velocity_target(joint_velocity_target)  # set PD control velocity
passive_force = robot.compute_passive_force(gravity=True, coriolis_and_centrifugal=True)  # ID(0;q,\dot{q})
robot.set_qf(passive_force)  # augment PD control with ID
```

Code in SAPIEN
Use Control in MDP Modeling

- When an RL work says: we use “velocity control” or “position control” as action. What does that mean?
Use Control in MDP Modeling

- The action in an MDP can be “target joint velocity” or “target joint position” for a controller.
Use Control in MDP Modeling

- The action in an MDP can be “target joint velocity” or “target joint position” for a controller.
- A controller (such as PD) is used to convert this velocity or position signal to joint torques, which are then used to drive the robot.
Use Control in MDP Modeling

- The action in an MDP can be “target joint velocity” or “target joint position” for a controller.
- A controller (such as PD) is used to convert this velocity or position signal to joint torques, which are then used to drive the robot.
- Joint velocity/position may be a better choice for MDP action (than torque) due to learnability and sim-to-real transferability.
More About Control

● Control focuses on stability and robustness
● There is a huge literature
 ○ Optimal control
 ○ Feedforward/feedback control (including PD)
 ○ Robust control
 ○ Self-organized control
 ○ Stochastic control
 ○ ...
● Optimal control has a strong connection with RL
Summary

● Embodied AI Approaches
 ○ Learning-based methods
 ■ Imitation learning
 ■ Reinforcement learning
 ■ ...
 ○ Classic robotics
 ■ Planning
 ■ Control
 ■ ...

● In-depth discussion of these topics
 ○ Course: machine learning for robotics
 ○ https://haosulab.github.io/ml-for-robotics/SP22/index.html
How do we Study Embodied AI Algorithms?

- An environment is required to develop approaches
- Real robot?
 - High costs
 - Safety concerns
- Simulation environment?
 - Physical simulation
 - Camera simulation
 - Assets loading
 - Sim-to-real gaps
Outline

- Modeling and approaches for Embodied AI
- Simulation technology for Embodied AI
 - From simulator to environment
 - Rigid body simulation
 - Camera simulation
 - Assets
- Building an environment from scratch
Outline

- Modeling and approaches for Embodied AI
- Simulation technology for Embodied AI
 - From simulator to environment
 - Rigid body simulation
 - Camera simulation
 - Assets
- Building an environment from scratch
Simulator

- A library (often a simple SDK) that simulates one or more physical processes.
 - Rigid body
 - Particle system
 - Light transport (renderer)

MuJoCo Engine Nvidia Flex Solver Bullet Physics SDK
Engine

● A software that bundles together simulators to help developers.
 ○ E.g., “Game engine”
 ○ Sometimes also called a simulator
Environment

- Bundles of engines/simulators, assets, and tasks for studying specific embodied AI problems.
 - Some environments also call themselves a simulator.
Dependency

*Some environments may not have an engine and are developed directly on low-level graphics & physics SDKs.

Note: simulator, engine, framework, environment, etc. do not have formal definitions and are often used interchangeably, so always use context to understand the software.
Dependency

<table>
<thead>
<tr>
<th>Environment*</th>
<th>Engine</th>
<th>Assets</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI2-THOR</td>
<td>Unity</td>
<td>PartNet-Mobility</td>
</tr>
<tr>
<td>AI Habitat</td>
<td>Unreal</td>
<td></td>
</tr>
<tr>
<td>ManiSkill</td>
<td>SAPIEN</td>
<td></td>
</tr>
<tr>
<td>iGibson</td>
<td>PyBullet</td>
<td></td>
</tr>
<tr>
<td>VR Kitchen</td>
<td>MuJoCo</td>
<td></td>
</tr>
<tr>
<td>Robosuite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isaac Gym</td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Graphics & Compute API

- OpenGL
- Vulkan
- CUDA
- ...

Physics SDK

- PhysX
- Bullet Physics SDK
- MuJoCo Engine
- ...

Some environments may not have an engine and are developed directly on low-level graphics & physics SDKs.

Assets

- PartNet-Mobility
- Matterport 3D
- ...

Note: simulator, engine, framework, environment, etc. do not have formal definitions and are often used interchangeably, so always use context to understand the software.
What to Choose?

- Graphics/physics SDK
 - If you are creating a new engine or modifying an engine.

- Engine
 - If you are creating a new environment.

- Environment
 - If you want to solve a predefined embodied AI problem.
Outline

● Modeling and approaches for Embodied AI

● Simulation technology for Embodied AI
 ○ From simulator to environment
 ○ Rigid body simulation
 ○ Camera simulation
 ○ Assets

● Building an environment from scratch
You probably have heard of physical simulators
 ○ MuJoCo, Bullet, PhysX
 ○ What do they do?
Rigid Body Simulation

- You probably have heard of physical simulators
 - MuJoCo, Bullet, PhysX
 - What do they do?
 - Model motion of bodies
Rigid Body Simulation

- You probably have heard of physical simulators
 - MuJoCo, Bullet, PhysX
 - What do they do?
 - Model motion of bodies
 - Handle collisions
Rigid Body Simulation

- You probably have heard of physical simulators
 - MuJoCo, Bullet, PhysX
 - What do they do?
 - Model motion of bodies
 - Handle collisions
 - Handle connected bodies
Most rigid body simulations repeat the following steps:

1. Stepping
2. Collision detection
3. Constraint solving
Rigid Body Simulation

- Most rigid body simulations repeat the following steps

```python
pybullet.stepSimulation
sapien.core.Scene.step
```
Stepping

- Advance the simulation time
- Most common choice: semi-implicit Euler

\[
\begin{align*}
v_{t+1} &= v_t + a_t \Delta t \\
x_{t+1} &= x_t + v_{t+1} \Delta t
\end{align*}
\]
Collision Detection

- Collision detection tries to find contacts
 a. Run a collision detection algorithm to find contact point positions, normals, and penetration/separation distances.
 b. Add each contact to the constraints
 c. (Constraints are solved later)
Constraint Solving

● Constraints are physical restrictions, such as
 ○ Bodies connected with joints
 ○ No penetration between contact bodies

● The solver solves a system of equations or an optimization problem to figure out a proper force/impulse to add for each constraint.
 ○ Key parameter **solver iterations**: how long the solver is allowed to run
Outline

● Modeling and approaches for Embodied AI

● Simulation technology for Embodied AI
 ○ From simulator to environment
 ○ Rigid body simulation
 ○ Camera simulation
 ○ Assets

● Building an environment from scratch
Camera Simulation

- Camera simulation is achieved by **rendering**
 - Modeling light transport
- Components in camera simulation
 - Cameras
 - Lights
 - Geometries
 - Materials and textures
Camera Model

- Real cameras use lenses, which can cause defocus blur
- Simulations typically use the simplified pinhole model
Camera Model

- Camera frustum
 - Many simulated cameras (rasterizers like OpenGL) have a range limit, forming a frustum.

This object will not block the camera. It is invisible.

This object is also invisible.

Near clipping plane

Far clipping plane
Lights

• Common types of lighting
 ○ Directional light (e.g. sun)
 ○ Point light (e.g. lamp)
 ○ Spot light (e.g. flashlight)
 ○ Ambient light (e.g. environment map)
 ○ Area light (e.g. bright screen)
 ○ Indirect light (from inter-reflections)
Geometry, Material, and Texture

- **Geometry**
 - Mesh, curve, volume, etc. representing shape of objects

- **Material**
 - Material describes the reflection and refraction properties of objects
 - Physically based rendering (PBR) model. E.g., microfacet models
 - Phong model

- **Texture**
 - Describes spatially varying material parameters over the geometry
Geometry, Material, and Texture

Image source: Unreal Engine 5 Documentation
https://docs.unrealengine.com/5.0/en-US/adding-detail-textures-to-unreal-engine-materials/
Geometry, Material, and Texture

Image source: Unreal Engine 5 Documentation
https://docs.unrealengine.com/5.0/en-US/adding-detail-textures-to-unreal-engine-materials/
Geometry, Material, and Texture

Image source: Unreal Engine 5 Documentation
https://docs.unrealengine.com/5.0/en-US/adding-detail-textures-to-unreal-engine-materials/
Geometry, Material, and Texture

Image source: Unreal Engine 5 Documentation
https://docs.unrealengine.com/5.0/en-US/adding-detail-textures-to-unreal-engine-materials/
Outline

● Modeling and approaches for Embodied AI

● Simulation technology for Embodied AI
 ○ From simulator to environment
 ○ Rigid body simulation
 ○ Camera simulation
 ○ Assets

● Building an environment from scratch
Objects & Scenes

PartNet-Mobility Dataset

Replica Dataset
Common 3D Model Exchange Formats

<table>
<thead>
<tr>
<th>Format</th>
<th>Material</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>obj+mtl</td>
<td>Phong, PBR (extension)</td>
<td>Plain text; can be edited manually.</td>
</tr>
<tr>
<td>stl</td>
<td>None</td>
<td>Suitable for collision shapes.</td>
</tr>
<tr>
<td>ply</td>
<td>Vertex color</td>
<td>Vertex color is rarely used for material.</td>
</tr>
<tr>
<td>dae</td>
<td>Phong</td>
<td>Many inconsistencies. Different software seems to disagree on its standard.</td>
</tr>
<tr>
<td>fbx</td>
<td>Phong</td>
<td></td>
</tr>
<tr>
<td>glb/gltf</td>
<td>PBR, Phong</td>
<td>Most powerful</td>
</tr>
</tbody>
</table>

Recommended model loader: Assimp
https://github.com/assimp/assimp
URDF

- Unified Robot Description Format
- Designed for robotics, including kinematics and dynamics
- XML describing an articulated body
 - `<link>`: a rigid part
 - `<inertial>`: mass and inertia of the link
 - `<collision>`: collision geometry
 - `<visual>`: rendering geometry
 - `<joint>`: a connector for 2 links
 - Revolute, continuous, prismatic, fixed, floating, planar
Importing Assets Into...
Importing Assets Into...

- Low-level simulators/renderers
 - Use assimp
Importing Assets Into...

- Low-level simulators/renderers
 - Use *assimp*

- Engines
 - SAPIEN and PyBullet load assets dynamically.
 - MuJoCo loads URDF or their own format (MJCF) all at once
 - Game engines have intuitive UI and drag-and-drop. Loading assets programmatically is often much harder but can be done.
Importing Assets Into...

- **Low-level simulators/renderers**
 - Use `assimp`

- **Engines**
 - SAPIEN and PyBullet load assets dynamically.
 - MuJoCo loads URDF or their own format (MJCF) all at once
 - Game engines have intuitive UI and drag-and-drop. Loading assets programmatically is often much harder but can be done.

- **Environments**
 - Customizability of environments is a design choice.
 - Environments also inherit asset loading procedure from their engines.
Summary

- Simulators, engines, environments
- Rigid body simulation
 - Stepping, collision detection, constraint solving, repeat
- Camera simulation
 - Camera, light, geometry, material, texture
- Assets
 - 3D model formats, URDF
Outline

- Modeling and approaches for Embodied AI
- Simulation technology for Embodied AI
- Building an environment from scratch
Build “Open Cabinet” From Scratch
Decide the Task

- Task: open the door of a cabinet with a robot arm
Decide the Assets

- I will use this cabinet and this robot
 - They are both in the URDF format
Decide which Controller to Use

- Torque control?
- PD velocity control?
- A combination of controllers?
- Teleport (non-physical)?
- …

In this tutorial, I will show PD velocity control.
Decide Object Interactions

- How will the robot open the door?
 - Through a physical process: force and friction
 - Use a simplified model: the robot is “glued” to the door when it is close to the door.
 - Use an even simpler model: the door automatically opens if the robot gripper is within range.

- This tutorial demonstrates using the physical process.
Decide the Observation Space

- Simulation state?
- RGB-D from a camera?
- RGB-D + robot state?

This tutorial uses an RGB-D camera and the robot state as observation.
Decide the Framework

• Choose a framework
 ○ SAPIEN, PyBullet, MuJoCo, Unity, etc.

• This tutorial uses SAPIEN
 ○ We made it.
 ○ Very good debug viewer.
 ○ Clean API, type hint, and code completion, suitable for education.
Start Coding the MDP

- Write down the interface for an MDP.
- The render function is mainly for visualization.

Inheriting gym.Env is not required.
Initialize Simulator and Renderer

Just some boilerplate code

```python
import sapien.core as sapien

def __init__(self, simulation_frequency=500):
    self.engine = sapien.Engine()
    self.renderer = sapien.VulkanRenderer()
    self.engine.set_renderer(self.renderer)
    self.scene = self.engine.create_scene()
    self.scene.set_timestep(1/simulation_frequency)
```
def render(self, mode="human"):
 if not hasattr(self, 'viewer') or selfviewer is None:
 from sapien.utils import Viewer
 selfviewer = Viewer(self.renderer)
 selfviewer.set_scene(self.scene)
 selfviewer.set_camera_xyz(-1, 0, 0.5)
 selfviewer.render()

def main():
 env = OpenCabinetEnv()
 while True:
 env.render()
 if env.viewer.closed:
 break

if __name__ == "__main__":
 main()
Load the Assets

```python
self.scene.set_ambient_light(color=[0.3, 0.3, 0.3])
self.scene.add_directional_light(
    direction=[-0.3, -0.3, -1], color=[1, 1, 1], shadow=True
)
```

Add lights in init, so we can see the objects.

```python
self.scene.add_ground(altitude=0, render=True)
loader = self.scene.create_urdf_loader()
loader.fix_root_link = True
self.robot = loader.load("../assets/panda.urdf")
self.robot.set_pose(sapien.Pose([-1, 0, 0]))
self.cabinet = loader.load("../assets/45146/mobility.urdf")
```

Load ground, robot and cabinet into the scene.

```python
def main():
    env = OpenCabinetEnv()
    while True:
        env.scene.step()
        env.render()
        if env.viewer.closed:
            break
```

Since `env.step` is not implemented, add `env.scene.step` to the rendering loop for debugging.

The position and scale of the cabinet is not reasonable.
Debug the Assets

It is possible to compute the bounding box in SAPIEN and “do it right”. Here for simplicity I use manually-tuned numbers.

```python
loader.scale = 0.6
self.cabinet = loader.load(
    "../assets/45146/mobility.urdf")
self.cabinet.set_pose(
    sapien.Pose([0, 0, 0.5]))
```
Implement Initial State (Reset)

```python
def _get_observation(self):
    return None

def reset(self):
    # initial cabinet joint positions
    self.cabinet.set_qpos([0, 0])

    # intitial robot base pose, may be randomized
    self.robot.set_pose(sapien.Pose([-1, 0, 0]))

    # initial robot joint positions, may be randomized
    qpos = [0, 0.345, 0, -2.25, 0, 2.75, 0.78, 0.04, 0.04]
    self.robot.set_qpos(qpos)

    # damping may require further fine tuning later
    joints = self.robot.get_active_joints()
    for joint in joints[:-2]:  # arm joints
        joint.set_drive_property(stiffness=0, damping=300)

    for joint in joints[:-2]:  # finger joints
        joint.set_drive_property(stiffness=0, damping=10)

    self.robot.set_drive_velocity_target(np.zeros(len(joints)))

    return self._get_observation()
```

```python
env = OpenCabinetEnv()
env.reset()
```
Implement Step Function

We also need to decide how many simulation steps to take in env.step after an action is taken.

For example, here we run the simulation at 500 Hz, if we want a 20 Hz action, we should step the simulation 25 times in the environment step function.

```python
def __init__(self, simulation_frequency=500, action_frequency=20):
    self.substeps = simulation_frequency // action_frequency

def step(self, action):
    # do stuff
    for substep in range(self.substeps):
        # do stuff
        self.scene.step()```
Implement Step Function

PD velocity control augmented with inverse dynamics

```python
def step(self, action):
 self.robot.set_drive_velocity_target(action)
 for substep in self.substeps:
 passive_force = self.robot.compute_passive_force(
 gravity=True, coriolis_and_centripetal=True
)
 self.robot.set_qf(passive_force)
 self.scene.step()

 return (self._get_observation(),
 self._get_reward(),
 self._get_done(),
 self._get_info(),
)
```
Implement the Observation

```python
self.camera = self.scene.add_camera(
 name="camera",
 width=128,
 height=128,
 fovy=np.pi / 2,
 near=0.01,
 far=2.0
)
self.camera.set_local_pose(
 sapien.Pose(
 [-1, 0.75, 0.75],
 [0.86988501,
 0.05311156,
 0.09607517,
 -0.48088336]))
```

Add camera

```python
if mode == "rgbd":
 self.scene.update_render()
 self.camera.take_picture()
 color = self.camera.get_float_texture("Color")[..., :3]

 # channel 2 is z depth, channel 3 is 01 depth
 depth = self.camera.get_float_texture("Position")[..., [3]]

 return np.concatenate([[color, depth], 2])
```

Add to render function

```python
rgbd = env.render("rgbd")
import matplotlib.pyplot as plt
plt.subplot(121)
plt.imshow(rgbd[..., :3])
plt.title("rgb")
plt.subplot(122)
plt.imshow(rgbd[..., :3])
plt.title("depth")
plt.show()
```

Visualization
Implement the Observation

SAPIEN also draws the added camera in the viewer for easier debugging.
Implement the Observation

Finish the observation function

def _get_observation(self):
    rgbd = self.render("rgbd")
    qpos = self.robot.get_qpos()
    qvel = self.robot.get_qvel()

    return np.concatenate([qpos, qvel]), rgbd
Reward

- **Sparse reward**
  - 1 when success, 0 otherwise
  - E.g., 1 if the door is opened to 60 degrees

- **Dense reward**
  - Give reward based on heuristics
  - E.g., proportional to the cabinet door angle
  - E.g., give reward if the gripper is close to the handle
Reward

Debugging: manually drag the door to success condition, and see if the reward is implemented correctly.

```python
def _get_reward(self):
 # sparse reward
 if self.cabinet.get_qpos()[1] > np.pi / 3:
 return 1
 else:
 return 0

 # dense reward
 # return self.cabinet.get_qpos()[1]
```

Drag the slider and print the reward.
env.step can set done to True when the task is completed. It is also okay to never set done to True.

def _get_done(self):
    return self.cabinet.get_qpos()[1] > np.pi / 3

    # it is okay to never have a done
    # return False

def _get_info(self):
    return None
Action Space

- For many algorithms, it is important to normalize the actions.
- Therefore, the environment should specify the range of the actions.
- Here the range for target velocity is $[-0.2, 0.2]$ for all joints.

```python
class OpenCabinetEnv(Env):
 action_space = gym.spaces.Box(np.ones(9) * -0.2, np.ones(9) * 0.2)
```
Test Random Actions

def main():
    env = OpenCabinetEnv()
    env.reset()

    while True:
        random_action = env.action_space.sample()
        obs, reward, done, info = env.step(random_action)
        env.render()
        if env.viewer.closed:
            break

Code will be released at https://github.com/haosulab/cvpr-tutorial-2022 after this tutorial.
Are we Done?
Are we Done?

No.
Iterate

- Developing environments is an iterative process
  a. Develop the environment following this tutorial.
  b. Find issues later when solving the environment.
  c. Analyze the issue. Modify the environment if needed.
     ■ (E.g. The environment above probably will not work because I used default friction, which is too small for the gripper to hold firmly)

- We introduce common issues in the later section
  Experiences and Practices to Debug Simulators
Summary

- Build an environment

- Decide the task
- Decide assets
- Decide controllers
- Decide object interactions

- Decide the observation space
- Pick a framework
- Implement the MDP

- Test, debug, iterate
Q & A

- Contact: Fanbo Xiang (fxiang@eng.ucsd.edu)