Generalization is particularly important when learning policies to interact with the physical world. The spectrum of such policies is broad: the policies can be high-level, such as action plans that concern temporal dependencies and casualties of environment states; or low-level, such as object manipulation skills to transform objects that are rigid, articulated, soft, or even fluid. In the physical world, an embodied agent can face a number of changing factors such as physical parameters, action spaces, tasks, visual appearances of the scenes, geometry and topology of the objects, etc. And many important real-world tasks involving generalizable policy learning, e.g., visual navigation, object manipulation, and autonomous driving. Therefore, learning generalizable policies is crucial to developing intelligent embodied agents in the real world.
Learning generalizable policies in the physical world requires deep synergistic efforts across fields of vision, learning, and robotics, and poses many interesting research problems. This workshop is designed to foster progress in generalizable policy learning, in particular, with a focus on the tasks in the physical world, such as visual navigation, object manipulation, and autonomous driving, because these real-world tasks require complex reasoning involving visual appearance, geometry, and physics. Technically, we expect to stimulate improvement in new directions such as:
Our main targeted participants are researchers interested in applying learning methods to develop intelligent embodied agents in the physical world. More specifically, target communities include, but are not limited to: robotics, reinforcement learning, learning from demonstrations, offline reinforcement learning, meta-learning, multi-task learning, 3D vision, computer vision, computer graphics, and physical simulation.
In affiliation to this workshop, we are also organizing the ManiSkill Challenge, which focuses on learning to manipulate unseen objects in simulation with 3D visual inputs. We will announce winners and host winner presentations in this workshop.
We invite submission to the Generalizable Policy Learning in the Physical World workshop, hosted at ICLR 2022.
A non-exhaustive list of relevant topics:
Jan 17, 2022 | Announcement and call for submissions |
Paper submission deadline | |
Mar 25, 2022 | Review decisions announced |
Camera ready and poster uploading deadline |
Start Time (PDT) | End Time (PDT) | Event |
---|---|---|
8:00:00 AM | 8:10:00 AM | Intro and Opening Remark |
8:10:00 AM | 8:40:00 AM | Invited Talk (Danica Kragic): Learning for contact rich tasks |
8:40:00 AM | 9:10:00 AM | Invited Talk (Peter Stone): Grounded Simulation Learning for Sim2Real |
9:10:00 AM | 9:20:00 AM | Break |
9:20:00 AM | 10:15:00 AM | Poster Session 1 |
10:15:00 AM | 11:15:00 AM | Live Panel Discussion (password: bluefew) |
11:15:00 AM | 11:23:00 AM | Challenge Winner Presentation (Zhutian & Aidan) |
11:23:00 AM | 11:31:00 AM | Challenge Winner Presentation (Fattonny) |
11:31:00 AM | 1:00:00 PM | Lunch Break |
1:00:00 PM | 1:10:00 PM | Contributed Talk (Sim-to-Lab-to-Real: Safe RL with Shielding and Generalization Guarantees) |
1:10:00 PM | 1:40:00 PM | Invited Talk (Shuran Song): Iterative Residual Policy for Generalizable Dynamic Manipulation of Deformable Objects |
1:40:00 PM | 2:10:00 PM | Invited Talk (Nadia Figueroa): Towards Safe and Efficient Learning and Control for Physical Human Robot Interaction |
2:10:00 PM | 2:18:00 PM | Challenge Winner Presentation (EPIC lab) |
2:18:00 PM | 2:30:00 PM | Break |
2:30:00 PM | 2:40:00 PM | Contributed Talk (Know Thyself: Transferable Visual Control Policies Through Robot-Awareness) |
2:40:00 PM | 3:10:00 PM | Invited Talk (Mrinal Kalakrishnan): Robot Learning & Generalization in the Real World |
3:10:00 PM | 3:40:00 PM | Invited Talk (Xiaolong Wang): Generalizing Dexterous Manipulation by Learning from Humans |
3:40:00 PM | 3:48:00 PM | Challenge Winner Presentation (Silver-Bullet-3D) |
3:48:00 PM | 3:50:00 PM | Break |
3:50:00 PM | 4:45:00 PM | Poster Session 2 |
4:45:00 PM | 5:30:00 PM | Challenge Award Ceremony |
5:30:00 PM | 5:35:00 PM | Closing Remarks |
listed alphabetically
listed alphabetically
listed alphabetically
We would like to thank the following people for their effort in providing feedback for submissions!
Poster session assignments are posted below. The session will be held at https://app.gather.town/app/Wfl5hBvVzs7ELFNS/gplpw-poster-room.